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T-Points: A Codimension Two Heteroclinic Bifurcation 
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The local bifurcation structure of a heteroclinic bifurcation which has been 
observed in the Lorenz equations is analyzed. The existence of a particular 
heteroclinic loop at one point in a two-dimensional parameter space (a 
"Tpoint") implies the existence of a line of heteroclinic loops and a logarithmic 
spiral of homoclinic orbits, as well as countably many other topologically more 
complicated T points in a small neighborhood in parameter space. 
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Lorenz equations. 

1. I N T R O D U C T I O N  

The Lorenz equations (5'6) 

9 = r x  - y - x z  

= x y  - -  b z  

(1) 

have been studied by many authors over the last 20 years, but are still a 
rich source of novel behavior. A good understanding of many of the com- 
plicated bifurcation phenomena which have been observed in these 
equations can be obtained by an analysis of the homoclinic orbits and 
heteroclinic loops which occur. (3'6) (A homoclinic orbit is a trajectory 
which tends to the same stationary point as t ~ +oe and a heteroclinic 
orbit is a trajectory which tends to two different stationary points, one as 
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t ~ - oo and the other as t --, oo ). A heteroclinic loop is a set of heteroclinic 
orbits between stationary points AI and A2, A2 and A3 ..... An_l and A,, 
and finally A, and A1. The Lorenz equations are invariant under the sym- 
metry 

(x, y , z ) -~( -x ,  - y , z )  (2) 

and, over a large region of parameter space, there are three unstable 
stationary points: the origin, 0, and C+=E_+ b x / g ~ - l ) ,  _+ b x / g ~ - l ) ,  
r - 1 ]  which are mapped onto each other by the symmetry. In a two- 
parameter numerical study m in which a was kept fixed, a = 10, it has been 
shown that there are particular parameter values (r _~ 30.475, b ~ 2.623) for 
which each branch of the unstable manifold of the origin coincides with a 
branch of the stable manifold of C + or C -  giving the configuration shown 
schematically in Fig. 1. Such points in a two-dimensional parameter space 
will be referred to as T points. This follows Ref. 1 where such a point was 
referred to as a terminal point, but which could also stand for codimension 
two point. 

We look at the simple heteroclinic and homoclinic orbits in a 
neighborhood of a T point. Although the results will be phrased in terms of 
systems with symmetry like the Lorenz equations, many remain true (with 
minor reinterpretation, see Ref. 3) for any family of systems with a 

\\. / i / i "-.-/ / /  

- \  I I - - ~ l  I 

Fig. 1. The heteroclinic loop, showing the surfaces Xl, Z2, X3, and Z 4 used to construct the 
return map S. The symmetric image of this loop is shown with a broken line. 
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codimension two heteroclinic loop between two stationary points with the 
same linearized flow as 0 and C +. The existence of horseshoes in this more 
general situation was proved in Ref. 9. 

2. A R E T U R N  M A P  

At parameter values near the T point, trajectories which pass close to 
0 follow the unstable manifold and are reinjected into a neighborhood of 
one of the other stationary points. Likewise, some trajectories which start 
close to C + or C -  follow the trajectories shown in Fig. 1 and hence return 
to a neighborhood of 0. Standard techniques can therefore be used to 
derive a return map on a plane near 0: the flow in a sufficiently small 
neighborhood of the stationary points is taken to be linear, and can be 
solved explicitly, while the global reinjection along the unstable manifolds 
is modeled by affine transformations. This procedure provides a first-order 
analysis in a small neighborhood of the heteroclinic orbits and stationary 
points for parameter values close to the T point. The results we obtain will 
hold (in some undetermined small neighborhoods) for the Lorenz 
equations and, in general, for systems satisfying the hypotheses below. (9'111 

Figure 1 shows the invariant manifolds of the stationary points 0 and 
C -+. The positive branch of the unstable manifold of 0 (which leaves 0 into 
x > 0) tends to C -  at the T-point parameter values, and so, by symmetry, 
the negative branch of the unstable manifold approaches C +. We concen- 
trate on the heteroclinic loop between 0 and C , formed by the positive 
branch of the unstable manifold of 0 and the trajectory from C -  back to 0. 
We compute a return map on a small section of a plane 2"4 = {(x, y, z): 
z =  h2, h2 small} just above 0 and shown in Fig. 1. This return map will be 
valid for points on Z4 lying to the right of the stable manifold of the origin 
(i.e., for trajectories which pass downward through Z4 before leaving the 
neighborhood of 0 close to the positive branch of the unstable manifold) 
and this part of the analysis will be valid for any heteroclinic loop between 
two stationary points with the properties described below. In Section 3 we 
will use the symmetry, (2), to derive some properties of flows at parameter 
values near the T point which involve trajectories which pass close to both 
C + and C- .  

We begin by dividing the flow into four parts and derive maps Ti, 
i = 1 ,  2, 3, 4 where TI:Z4~Z~, Tz:Z~--,Z2, T3:Z3~Z2, and T4: 
Z3 ~ 2;4, where the four planes Z i are as shown in Fig. 1 and described 
below. The maps T~ and T3 depend only on the flow near the stationary 
points, which is taken to be linear, whereas T2 and T4 reflect global proper- 
ties of the flow between the stationary points. It is convenient (and natural, 
as we see below) to assume that all the parameter dependence is in the map 
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T2 and that T 1, T3,  and T4 do not depend on the parameters. Thus, in par- 
ticular, we assume that the eigenvalues of the linearized flow near 0 and 
C • do not depend on the parameters. This assumption is also justified in 
the context of our first-order analysis. We choose coordinates (x, y, z) near 
0 [-different from the original (x, y, z) ~n (1)] and (Jr, Y, Z) near C -+ such 
that the flow in a neighborhood of 0 and C + can be written as 

X = P X - F 2 Y  2 = 2 1 x  

Y = F 2 X + P Y  at C + )) = --J~2 Y at 0 

2 = - A Z  f = - - ,~3  Z 

where A > P > 0  and ~.2>.~1>23>0. These inequalities are certainly 
satisfied by the Lorenz equations for parameter values near the T point. In 
these coordinates the planes Zi can be chosen to be 

~:,: {(x, y ,z ) lx:hl}  

222: {(x, Y,Z)lZ=H} 

~3  = {(.J(~ Y~Z)l Y~---0} 

Z4= {(x, y, z)lz=h2} 

although when constructing the return map X3 must be restricted so that 
trajectories only strike the surface once as they spiral out of C -+. This 
allows us to write the maps TI: Z4--+ Z1 and T3:Z3--+ Z2 explicitly: 

Tl(x, y, h2) = (hi, y', z'), where x > 0  and = z' \ qx ~ ] (3) 

T3(X, O, Z)  = (X', Y', H), where 
x') =(xz cos(z in Z + 4)) 
Y'] \ X Z  ~ s i n ( ~ l n Z + ~ b )  

(4) 

Here 6 = 23/21, A = P/A, ~. = -galA, and p, q, and ~ are constants. Notice 
that the direction of the flow is from Z z to Z3, and we compute T3 instead 
of T3 1 for ease of analysis. 

Now consider the map T4:223--+ 224. The local unstable manifold of 
C -  is two-dimensional and intersects Z3 with Z = 0. The stable manifold of 
0 is also two-dimensional and intersects Z 4 with x = 0. Since two-dimen- 
sional manifolds intersect generically in ~3, we assume that the unstable 
manifold of C and the stable manifold of 0 intersect along a single trajec- 



T Points: A Codimension Two Heteroclinic Bifurcation 483 

tory. Thus we assume that there is always a heteroclinic connection 
between C -  and 0. If we write T4(X, O, Z)  = (x, y, h2) where 

with c~, fl, A, B, C, and D constants, and the matrix is nonsingular, the con- 
dition that there is always a heteroclinic connection between C -  and 0 is 
equivalent to saying that there is a point (X, 0, 0) on Z3 which is mapped 
to (0, y, h2) on ~v" 4 for some y. This implies that 

c~ + A X =  0 (6) 

for some X with (X, 0, 0) on 23. 
In constructing the map T2 it is natural to introduce two parameters, 

# and v, which give the (X, Y) coordinates on Z 2 where the unstable 
manifold of 0 strikes Z 2 for the first time. Since our choice of coordinates 
near C -  implies that the (one-dimensional) local stable manifold of C -  
intersects X2 at (0, 0, H), we will have a heteroclinic connection (and hence 
the T point) between 0 and C -  when (/~, v) = (0, 0). Thus, to first order, we 
write T2(h I , y, z ) =  (X, Y, H) where 

b y 

This is permissible at first order since the time spent traveling between Z1 
and s is small compared with the time spent near the stationary points. 
The constant matrix with elements a, b, c, and d is assumed to be non- 
singular. 

The full return map S: Z4 ~ Z4, defined for x > 0, is T4 o T 3 1 o/ '2  o T 1" 
We do not study S here because it is too unwieldy (T31 is particularly 
nasty) but we can use T1, T2, T3, and T4 to find simple homoclinic and 
heteroclinic orbits near the T point (#, v) = (0, 0). 

3. H O M O C L I N I C  O R B I T S  A N D  S U B S I D I A R Y  T P O I N T S  

Figure 2(a) shows an orbit homoclinic to 0 which passes close to C . 
For this to occur, the unstable manifold of the origin must, after passing 
close to C - ,  strike Z4 with x = 0. So, using 7"4 

+ A X +  B Z  = 0 (8) 
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0 0 0 

a b 

Fig. 2. Schematic drawings of (a) a homoclinic orbit to the origin, (b) a heteroclinic loop 
between C + and C- ,  (c) a homoclinic orbit to C +. Note that it does not pass close to C- .  

where (X, 0, Z) is the coordinate of the intersection of the unstable 
manifold of 0 with X 3. Thus, from T 3 

= X Z  ~ cos(Z in Z +  ~)  
(9) 

v = X Z  ~ sin(~ In Z + ~b) 

H e n c e  

V =  - - - -  

1 
-~ (c~ + B Z )  Z ~ cos(2 in Z + 4~) 

1 
A (~ + B Z )  Z ~ sin(~ln Z +  ~)  

(10) 

As Z ~  0, (10) describes a logarithmic spiral in the (/~, v) plane, so there 
are homoclinic orbits of the form shown schematically in Fig. 2(a) along 
this spiral which tends to the T point (0, 0) in parameter space (see Fig. 3). 
For any generic one-parameter family of systems which passes through the 
T point there are infinite sequences of such homoclinic orbits (on both 
sides of the T point) which accumulate to the T point at the rate 
exp(-2rePlY?). 

To find the locus in parameter space of the simplest heteroclinic loop 
between C + and C -  we can use the symmetry of the Lorenz equations. If 
there is a point (x, y) with x > 0 on Z 4 which lies on the stable manifold of 
C-  and, at the same parameter values ( - x ,  - y ) ~  X4 lies on the unstable 
manifold of C - ,  then there must be a heteroclinic connection of the form 
shown in Fig. 2(b). 

The first condition implies T 2 [ T I ( x ,  y,  h2)] = (0, 0, H) and therefore 

0 = l~ + a p y x  ~2/;~1 + bqx  ~ 
(11) 

0 = v + c p y x  ~2/~1 + dqx  ~ 
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2Oto\2b 
4b 

Fig. 3. The local bifurcation picture. The labels give the figures showing the form of the 
heteroclinic loop or homoclinic orbit which occurs along the relevant line or set of points. 

The second implies that 
( - x ,  - y ,  h2) and therefore 

there exists an X such that T4(X,O,O)= 

- x = ~ + A X < O  
(12) 

- y = f i + c x  

for some 35. Hence 

O~l.t+bq 1~ + AX[ 6 

O~v+dq ]~ +AX[ 6 
(13) 

Retaining only the leading order terms gives v,~d#/b, with 
sgn # = - s g n  K1, KI = bq. Thus there is a half-line of heteroclinic orbits 
which terminates at the T point (#, v )=  (0, 0), given by v~dl~/b, 
sgn/~ = constant. These heteroclinic orbits have been discussed in Ref. 3 for 
parameter values outside a small neighborhood of the T point: if A < 1 
there are lines of heteroclinic and homoclinic orbits (involving only the 
stationary points C § and C - )  which accumulate on this line. In a 
neighborhood of the T point it is also possible to deduce the existence of 
other homoclinic orbits. For  example, replacing ( - x ,  - y ,  h2) by (x, y, h2) 
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v 

0 0 

a b 

Fig. 4. One branch of the unstable manifold of the origin for the subsidiary T points shown 
in Fig, 3. 

on  ~'4 in the analysis above, we find a half-line of homoclinic orbits to C +- 
of the form shown schematically in Fig. 2(c). To lowest order these also lie 
on the half-line v = d#/b, sgn # = - s g n  K1, although higher order terms are 
different: the equivalent of (13) are obtained by changing the signs of a 
and c. 

Figure 3 shows the theoretical bifurcation diagram near the T point. It 
agrees with the numerically computed picture in Ref. 1, except that it con- 
tains additional bifurcations, and in Ref. 1 the logarithmic spiral of 
homoclinic orbits was mistakenly identified as a series of concentric circles, 
probably for complicated reasons to do with interaction between the 
topology of the homoclinic orbits and the computer program used to com- 
pute them. 

Obviously there are many more complicated homoclinic and 
heteroclinic orbits which we have not discussed but which could, in prin- 
ciple, be analyzed using the return map S and added to Fig. 3. In par- 
ticular, there are also subsidiary T points which accumulate at the principal 
T point (0, 0). For example, using the return map we can look for T points 
where the connections are as shown in Fig. 4. Some horrendous algebra 
leads one to the conclusion that there are sequences of such T-points which 
approach (0,0) asymptotically along the half-line v=dl~/b, s g n # =  
- sgn  K1 (see Fig. 3). Each of these subsidiary T points is amenable to the 
same analysis described above for the principal T point (although with a 
smaller neighborhood) and, in particular, there are sequences of T points 
which tend to these T points. And so on. 
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4. FINAL R E M A R K S  

In previous papers (2'~'6'7) we argued that some details of complicated 
sequences of bifurcations occurring in. ordinary differential equations can 
be understood by keeping careful track of the periodic orbits which are 
created and destroyed in the bifurcations associated with homoclinic orbits 
and heteroclinic loops. For the bifurcations discussed above, homoclinic 
orbits to the origin have been analyzed in Ref. 6, and in Ref. 3 we suggested 
that it was reasonable, in certain circumstances, to think of the bifurcation 
associated with the symmetric heteroclinic loop between C + and C-  as 
producing a single symmetric periodic orbit, despite the complicated 
sequence of bifurcations which may actually occur. (If A < 1, as is the case 
for the Lorenz equations, a more complicated sequence of bifurcations is 
assured.) At first sight, this argument appears to produce a contradiction 
when one considers a circular path through the two-dimensional parameter 
space which encloses the T point. At a particular point on the circular path 
there is a fixed number of periodic orbits in the system. Now consider mov- 
ing once around the circle in parameter space; the heteroclinic line is 
crossed only once, resulting in the production of a periodic orbit which is 
not obviously destroyed elsewhere on the path. However, any circular path 
will necessarily cross the spiral of homoclinic orbits to the origin an odd 
number of times and it is possible to resolve the contradiction by showing 
that the odd homoclinic bifurcation results in the destruction of the orbit 
produced in the heteroclinic bifurcation. This type of argument actually has 
many implications for details of the local bifurcation picture which are not 
easily accessible via rigorous analysis of the return map S. Furthermore, 
similar considerations give considerable insight into global bifurcation pat- 
terns in large regions of (r, b)-space in the Lorenz equations. A full dis- 
cussion of the global results will be published elsewhere. For the moment, 
notice that the most frequently studied parameter values, 0 < r <  0% 
b= 8/3, ~r= 10, gives a line in (r, b)-parameter space which passes very 
close to the T point mentioned at the beginning of this paper. The 
logarithmic spiral of homoclinic orbits to the origin [equation (10) and 
Fig. 2(a)] intersects this line for r values close to 30. This fact can be used 
to explain, for the first time, why the Lorenz system (b= 8/3, or= 10) 
changes from the regime in which the geometric Lorenz attractor (4'~~ 
appears to be a good model of the behavior (in r < 28 and before the spiral 
is crossed) through a parameter interval in which a "twist" is introduced 
into the flow and a hook into appropriate return maps (28 < r < 31, see 
Ref. 6), to the regime in which stable periodic orbits and period-doubling 
bifurcations occur (r > 31 and after the spiral has been crossed). 
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